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How “good” are pollution predictions?
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Introduction
Motivation

Joint advancements in machine learning + satellite imagery has led to an
emergence of predictions of environmental quality.

Data source increasingly applied in causal inference settings. Why?

High coverage. Satellite imagery is spatially continuous

Fine resolution. Raster data at 1km pixels and daily frequency

Features allowing researchers to answer previously unanswerable questions
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Introduction
Fine particulate matter

One particular literature where prediction estimates are growing in empirical
applications is predicted fine particulate matter, or PM2.5

Daily/monthly predictions of PM2.5 concentrations across space

Increasingly popular data in public health and economics literature

Learn relationship between in situ monitors and remotely-sensed features

Monitor observations as “ground truth”

Validate predictions using cross-validation to prevent overfitting
Predict PM2.5 concentrations at unobserved locations/times
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Introduction
Regulatory monitors

Between 2002-2019, CONUS monitored by an array of 2,9201 in situ monitors

High accuracy, at a particular location

High costs, limited number of monitors
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Regulatory PM2.5 monitors and counties in the US, June 2012
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Predicted PM2.5 concentrations in the US in 2005
Sources: Fowlie, Rubin and Walker ( ) and Di et al. ( )2019 2016 7
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Introduction
Problem

While these estimates are exciting and promising, there are no oracles

Despite this, some applications have treated these estimates as “truth”

Measurement error underestimated, treated as classical
Uncertainty ignored

Predictions treated as a “one-size-fits-all” dataset
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PM2.5 products
Authors & Year Years Frequency Extent Citations

van Donkelaar et al. ( ) 1998-2014 Yearly Global [0.78, 0.81] 1,015

Wei et al. ( ) 2000-2018 Monthly China [0.80, 0.90] 531

Di et al. ( ) 2000-2012 Daily CONUS [0.74, 0.88] 413

Hu et al. ( ) 2011 Daily CONUS [0.64, 0.83] 404

Di et al. ( ) 2000-2016 Daily CONUS [0.73, 0.91] 382

Wei et al. ( ) 2018 Daily China [0.88, 0.89] 373

Reid et al. ( ) 2008 Daily Northern CA 0.80 252

Van Donkelaar et al. ( ) 1998-2019 Monthly Global [0.51, 0.86] 73

van Donkelaar et al. ( ) 1998-2019 Monthly Global [0.75, 0.95] 68

Meng et al. ( ) 1981–2016 Yearly North America [0.60, 0.85] 59

Requia et al. ( ) 2000-2016 Daily CONUS [0.86, 0.93] 56

Reid et al. ( ) 2008-2018 Daily Western US [0.58, 0.73] 30
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Introduction
Research questions

We hope to elucidate these issues by answering the following:

1. How does predictive accuracy change across uses?
2. How much uncertainty lies behind predictions?
3. How does non-randomness of monitor sites affect generalizability?
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Introduction
To answer these questions

Produce monthly PM2.5 (1km x 1km) predictions for the CONUS (2002-2019)

We follow the approach and feature set of two highly cited papers:

Di et al. ( ); Di et al. ( )2016 2019

Why take this approach?

Raw data and gridded output are publicly available
Missing is the intermediate steps used to generate the gridded output
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Modeling
Predicting PM2.5

To estimate monthly PM2.5 (1km × 1km) using a LightGBM learner:

: Time-varying features (e.g., AOD, weather, CTM outputs)
: Time-invariant features (e.g., land use, elevation, NDVI)
: Spatial lag features (IDW monitor readings)

Trained via nested cross-validation to minimize MSE

= ( , , )𝑃𝑀ˆ𝑖𝑡 𝑓𝐺𝐵𝑀 𝐗𝑖𝑡 𝐙𝑖 𝐒𝑖

𝐗𝑖𝑡

𝐙𝑖

𝐒𝑖
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Modeling
Measuring uncertainty in PM2.5 predictions

We quantify predictive uncertainty using LightGBM quantile regression:

Separate models for 2.5th and 97.5th percentiles
Trained using the pinball loss function

Two quantile regressions are differenced to produce a 95% prediction intervals

L(𝜏, 𝑥, 𝑦) = { 𝜏(𝑥 − 𝑦),
(1 − 𝜏)(𝑦 − 𝑥),

if 𝑥 ≥ 𝑦
if 𝑥 < 𝑦

−𝑃𝑀ˆ0.975 𝑃𝑀ˆ0.025
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How does predictive accuracy change across uses?
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Model Evaluation
How does predictive accuracy change across uses?

The standard CV approach is independent identically distributed (IID) CV

Randomly samples monitor-month observations, unclustered
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IID CV

Cross validation in temporally repeated grids. Standard IID CV using 3-fold cross-validation. Each layer of
pixel describes the sample across different points in time, and the color of each pixel describes the fold that
the observation is assigned to. White folds indicate areas without monitors.

t = 1

t = 2

t = 3

t = T

⋮

Monitor/fold: No monitor Fold 1 Fold 2 Fold 3
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Model Evaluation
How does predictive accuracy change across uses?

The standard CV approach is independent identically distributed (IID) CV

Randomly samples monitor-month observations, unclustered If we wanted
to interpolate missing data at monitors, IID CV is reasonable

If the goal is to estimate PM2.5 in unmonitored areas, IID CV is not appropriate

Ignores the spatial and temporal (panel) structure of the data
↳ Overestimates model performance
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Model Evaluation
How does predictive accuracy change across uses?

There is no one-size-fits-all cross-validation approach

Training and validation should match the downstream use case

To learn out-of-sample, spatial cross-validation (SPCV) is better suited

Clusters monitor-months by spatial proximity
Evaluation is done outside each cluster, mimicking unmonitored space
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Spatial cross-validation

Cross validation in temporally repeated grids. Spatial resampling approach, where the data is clustered
into 3 distinct spatial clusters. Each cluster is then used as a fold in the cross-validation process, effectively
limiting the model to only learn from observations in the same cluster.

t = 1

t = 2

t = 3

t = T

⋮

Monitor/fold: No monitor Fold 1 Fold 2 Fold 3
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Model Evaluation
Nested cross-validation

Additionally, we incorporate a nested cross-validation approach

Inner loop: hyperparameter tuning
Outer loop: model evaluation

Ensures an unbiased estimate of the model’s generalization error

We assess the model’s ability across different four validation approaches

IID-IID, IID-SPCV, SPCV-IID, SPCV-SPCV
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SPCV-SPCV

Nested cross validation in temporally repeated grids: Plot illustrates inner SPCV and outer SPCV nested
cross-validation in temporally repeated grid. Only one outer fold is shown for clarity, colored in gray, but the
process is repeated three times.

t = 1

t = 2

t = 3

t = T

⋮

Monitor/fold: No monitor Held-out outer fold Inner fold 1 Inner fold 2 Inner fold 3
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SPCV-IID

Nested cross validation in temporally repeated grids: Plot illustrates inner IID and outer SPCV nested
cross-validation in temporally repeated grid. Only one outer fold is shown for clarity, colored in gray, but the
process is repeated three times.

t = 1

t = 2

t = 3

t = T

⋮

Monitor/fold: No monitor Held-out outer fold Inner fold 1 Inner fold 2 Inner fold 3
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PM2.5 prediction accuracy declines steeply when spatially validated and/or restricted from using close
spatial lags. Matrix cells display (and are filled) by  values from the combination of cross-validation
approach (row) and available spatial lags (columns).

𝑅 2
23

http://127.0.0.1:7880/figures/main-performance-evaluation.png
http://127.0.0.1:7880/figures/main-performance-evaluation.png


Out-of-sample PM2.5 prediction accuracy. Comparison of binned predicted PM2.5 values to binned true
PM2.5 values for pixels with monitors. 24



How much uncertainty lies behind predictions?
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Pixel Design Values: Plot of predicted Design Values for each pixel generated with predictions between
2017-2019 26

http://127.0.0.1:7880/figures/main_dv_map_0kms_i.spcv_o.spcv3-A.png
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Attainment Status by Design Value Rank. Predicted Design Values against their Predicted Design Value
rank-order (from lowest to highest) of Census Tracts with a monitor and associated prediction intervals.
Vertical intervals show uncertainty around predicted Design Values, with purple intervals indicating tracts
confidently classified as compliant, and grey intervals indicating tracts where compliance status is uncertain. 27

http://127.0.0.1:7880/figures/main-attainment-A-wide.png
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Attainment Status by Design Value Rank. True Design Values against their True rank-order (from lowest to
highest) of Census Tracts with a monitor and associated prediction intervals. Comparison of these results
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Attainment Status by Design Value. Plot of attainment status by Design Value, aggregated to the tract
level. Census tracts that do not meet criteria for attainment are colored dark. 29
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Attainment Status by Upper Bound of Design Value. Plot of attainment status by Design Value, aggregated
to the tract level. Tracts colored dark cannot rule out being above the standard given prediction interval. 30
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How does non-randomness of monitor sites affect generalizability?
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Probability of monitor presence across the CONUS. Color gradient probability of a pixel containing a
monitor. Darker pixels indicate lower probability and greater potential for uncertainty. 32

http://127.0.0.1:7880/figures/appendix-map-pmonitor.png
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= + Hispanic + Black + White + Urban + +𝐷𝑉ˆ𝑖 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛿𝑖 𝜀 𝑖

Regression coefficients for across different monitor-presence probability thresholds: Estimated
coefficients of percentile white, black, and hispanic and corresponding confidence intervals of each
demographic group against increasing monitor-presence probability thresholds.

33

http://127.0.0.1:7880/figures/main-census-thresholds-spcv-wide.png
http://127.0.0.1:7880/figures/main-census-thresholds-spcv-wide.png


Summary

Air quality predictions are a big deal, but the predictions have problems

 Accuracy falls sharply with distance from monitors and without spatial lags
 Tree-based models are not learning the spatial variation of PM2.5

 Prediction intervals are large, there is a lot of uncertainty, even near monitors

 Controlling for monitor presence can meaningfully affect OLS regression
estimates

1a.
1b.

2.

3.
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