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Abstract

Using data on GitHub users around the world, we estimate the effects of transitions to Day-
light Saving Time on worker activity. In daily activity, transitions appear short lived—there
is evidence of two days of declines before activity returns to baseline levels. However,
hourly analysis reveals a transition to Daylight Saving Time that is much longer—losses
appear in the early working hours of work days for up-to-two weeks following the initia-
tion of Daylight Saving Time.
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1 Introduction

Motivated by potential energy savings, Daylight Saving Time (DST) was introduced in 1916

and widely adopted by many Western countries soon after.1 Today, the consensus opinion with

respect to energy consumption is that any savings associated with DST are likely small (Kotchen

and Grant, 2011; Belzer et al., 2008)—they are on the order of plus-or-minus one percent. The

merits of continuing these twice-yearly adjustments to the clocks of 1.6 billion people across

75 countries are therefore important contributors to the continuing debate, even as countries

abandon the practice.2 Most recently, the United States (US) Senate unanimously passed the

Sunshine Protection Act in 2021, which would have the United States likewise abandoning the

practice.3

While the Sunshine Protection Act remains in the US House of Representatives, of note is

the House Energy and Commerce Committee’s interest in learning of the productivity effects

of time changes prior to holding a vote. Our analysis contributes directly to the debate, then,

and with immediate implication for policy. To that end, we document significant declines in

worker activity following DST, with patterns that suggest a weeks-long period of transition

through which workers are adjusting to the shifting of time relative to the cycle of daylight and

darkness.

To measure the potential declines in activity induced by DST we exploit publicly available

activity data from GitHub, a popular cloud based version-control platform used by collabora-

tive programmers. Observations include detailed information regarding changes to a project’s

1 The shifting forward of the clock increased the availability of natural light in the evenings—at the time, this
lessened the need for the carbon filaments and kerosene associated with indoor lighting (Nordhaus, 1997).

2 China first abandoned the practice in 1991, and several other countries following that path in the mid-to-late
2000s. Other countries discontinuing DST include Pakistan (2009), Russia (2010), Azerbaijan (2015), and Brazil
(2019).

3 This national-level action follows several state-level initiates that similarly moved toward the permanent
adoption of DST. For example, Oregon (2019) and Washington (2019) have passed such legislation, and Califor-
nia’s Proposition 7 (2018) was approved by over 60 percent of voters.
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codebase—including what was changed and who made the change—providing a direct mea-

surement of labor activity. Of particular value, though, is that we observe GitHub user activity

in second-level precision. This level of granularity makes GitHub a natural laboratory to con-

sider the effects of DST. In our analysis, we consider activity aggregated to both the daily and

hourly levels across cities that experience the Spring transitions to DST differently—those that

experience it earlier than others, experience it later than others, or do not experience it at all.

In daily activity we find significant declines on the order of one or two days. While such

declines are presumably associated with significant economic costs, this alone suggests that the

productivity losses are relatively short-lived. However, in hourly activity we find much longer

periods of transition. In particular, in the two weeks following transitions to DST we find

significant declines in worker activity in early work hours, between 8am and 10am. That daily

measures of productivity evidence significant declines for such a short period of time suggests

that the slow morning hours in the data are made up for with increases in activity elsewhere in

the work day. However, increases in activity tend not to cluster in particular hours of the day.

Rather, the data are consistent with workers recovering from morning productivity declines

without a common strategy for dealing with the transition. In the end, it is clear from an hourly

analysis that the belief in “one or two days of decline” likely fails to capture the full economic,

personal, or potential social costs induced by DST.

Circadian rhythms—that is, the processes that synchronize and regulate the body’s sleep-

wake cycle around the 24-hour day—are resilient to adjustments to sleep-wake cycles, and the

transition to a modified cycle of daylight and darkness is not immediate (Kantermann et al.,

2007). Thus, that we find long-lasting disruptions to activity are consistent with this resilience.

This is also consistent with laboratory results suggest that transitions to DST are measured in

days (Monk and Aplin, 1980; Czeisler et al., 1999), and associated with immediate losses of

sleep that do not typically return to normal for roughly seven days (Kantermann et al., 2007;
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Lahti et al., 2006). Workplace safety (Barnes and Wagner, 2009; Lahti et al., 2011), road safety

(Smith, 2016; Bünnings and Schiele, 2021), and student performance (?) have all been shown to

decline following DST. Google searches for entertainment-related keywords and phrases in US

cities that experience DST (i.e., those other than in Arizona and Hawaii) are differentially higher

on the Monday that immediately follows DST transitions than on the Monday prior to DST

(Wagner et al., 2012). This has been interpreted as DST-induced increases in “cyberloafing”

and suggests that declines in workplace productivity can result from DST. However, to our

knowledge, documenting worker activity around DST transitions has thus far been absent in the

literature.4

While high-frequency observations of activity available on GitHub make for a rare oppor-

tunity to learn about such behavior, GitHub users are not representative of the labor force of

any country, and certainly not of the world. However, with roughly 83 million users currently,

GitHub does account for a large and growing sector of the global labor market. It is also ar-

guable that our sample is representative of a much-larger group of similarly skilled workers who

work across industry, government, academic, and policy environments. In many work environ-

ments, for example, similarly skilled individuals are working in proprietary tasks that preclude

their formal participation in a public code-sharing environment, and in others we would find

still more consumers of the public offerings of active GitHub users. In this way, it is reasonable

to infer that the effects we identify extend naturally to a larger group of workers.

In Section 2 we describe the data we rely on in our analysis and provide the necessary

context for the interpretation of GitHub user data as we consider whether there is evidence of a

causal relationship between DST and worker activity. In Section 3 we discuss our methodology
4 Somewhat more removed from the research question, DST has also been associated with lower well-being

and general life satisfaction (Kountouris and Remoundou, 2014; Kuehnle and Wunder, 2016), increases in myocar-
dial infarction (Toro, Tigre, and Sampaio, 2015), reductions in crime (Doleac and Sanders, 2015), and increases in
suicide (Berk et al., 2008). (DST has been associated with movements in financial markets, though the evidence is
mixed. For example, Kamstra, Kramer, and Levi (2000) suggests that there are negative financial returns following
DST weekends, while Gregory-Allen et al. (2010) finds no evidence of a Daylight Saving Time anomaly.)
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and report event-study analyses at both the daily and hourly level. We summarize and offer

concluding remarks in Section 4.

2 Data

2.1 Sample selection

GitHub is a popular cloud based version-control and code-hosting platform. Widely adopted

by software developers, engineers, and scientific coders for hosting and maintaining collabora-

tive projects, GitHub is a web based extension to the most popular distributed version control

system, Git.5 With a current userbase of over 83 million, GitHub is the largest platform of its

kind.

Consistent with its origin as a tool for collaboration with excellent version control, the pri-

mary feature of GitHub is the facilitation of code updates across multiple collaborative users.

In essence, it provides broad access and version control to a remote copy of a project and all of

its files, and as progress is made to a project hosted on the platform, contributions are tracked

across time and contributor, which generates a record of labor activity metadata.

For the purpose of this study, we collect GitHub activity around the DST episodes from 2013

through 2019.6 To reflect “active” users we restrict each year’s sample to those we observe

activity for in each month of that year. To limit the potential presence of “bot” activity, we

discard all observations originating from accounts that ever have more than 30 events in one

hour or 150 in one day (McDermott and Hansen, 2021). Following these restrictions, the total

number of unique users in the sample is 141,899. Having matched each event in the raw data to

5 Of the 80,000 respondents in the 2021 Stack Overflow Annual Developer Survey, over 90 percent reported
using Git.

6 We draw our sample from two third-party sources (GH Archive and GHTorrent) that have organized the event
data from GitHub’s public timeline for the purpose of being more accessible to researchers. Our analysis therefore
does not include any activity on private repositories. For example, a business producing proprietary software, or
a team of data scientists performing analysis on valuable or sensitive data, would host their repositories privately
and would not be observed on the public timeline.
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the location identified in the user’s profile at the time of the event, we aggregate event counts to

the city-by-day level (or city-by-hour level) and restrict the sample to the 50 most-active cities.

These are reported in Table S2. As expected, the geographic distribution of these workers

reflects major cities known for their robust presence in the tech industry.

2.2 Outcomes

All activity on GitHub is recorded as an “event,” and categorized as one of 13 types (see Table

S1). In some way, they are each potential measures of incremental productivity on shared

projects. However, given the inability to distinguish the relative productivities of event types,

broadly, we will consider all events, and then separately consider the 42.4 percent of events that

are classified as “pushes.” Push events are uploaded changes of a local file to the remote copy,

which are likely stronger signals of productivity. For example, this analysis will exclude “pull

requests,” which represent contributors’ requests to merge the code changes of others into their

remote copy. In the end, we find comparable patterns in activity around transitions to DST in

both measures.

2.3 Treatment

While many countries practice DST, there is variation across cities in both the practice of DST

and in the timing of DST. Across the 50 cities in our sample, two important sources of treatment

variation exist. In North America, clocks transition to DST on the second Sunday of March.7 In

the European Union, clocks transition on the last Sunday of March. Both of these will contribute

to identifying the effect of DST on GitHub activity—given the staggered timing of treatment,

they each act as a control for the other, and can each be compared to the “never-treated” cities.

7 The exceptions to this in the 2013–2019 period are Hawaii, parts of Arizona, Puerto Rico, US territories in
the Pacific Islands, Saskatchewan, and the Yukon. None of these are among the 50-largest cities, and are therefore
not in our sample.
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Given the staggered timing of treatment, we follow Sun and Abraham (2021) in the estimation

of treatment effects.8

In Figure 1 we plot patterns of GitHub events around DST transitions. In Panel A we show

daily events in the three weeks before and after DST and aggregate across sample years, separat-

ing users by whether they are in North America, in the EU, or in locations that do not experience

DST. A large portion of GitHub activity originates in recognizable technology centers, many

of which are located in the United States. Thus, activity in North America is higher across

the sample period. This is also evident in Panel B, where we plot hourly events. As a general

rule, activity is also higher during traditional working hours of 9am-to–5pm, Monday through

Friday—a dip in activity during traditional lunch hours is also apparent.

3 Results

To identify the effect of Daylight Saving Time on activity we employ an event-study design. We

first consider specifications at the daily level, followed by similarly constructed models at the

hourly level. Daily estimates provide insight into the size and duration of any level-decreases in

labor activity associated with DST. Hourly estimates, on the other hand, can speak to within-day

variation in user activity—this will prove important to understanding the full extent to which

transitions to DST are disruptive to productivity, inducing a substitution of activity across hours

of the day. In both environments, however, we are interested in identifying the potential changes

in activity around the initiation of DST in treatment locations—their dynamics, in particular. In

related literatures that assess impacts of DST transitions on outcomes, much of the identifying

variation arrises across time. For example, control groups often consist of only parts of Arizona

and Hawaii. In such cases, treatment is often captured by estimating a regression discontinuity

8 In Figure S1 we produce estimates separately for users in North American and European Union cities with
users in “never-treated” cities as controls—results are robust to this distinction.
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in time (RDiT) (Bünnings and Schiele, 2021; Doleac and Sanders, 2015; Smith, 2016; Toro

et al., 2015). Given the worldwide nature of GitHub, however, there is considerable cross-

sectional variation available to us in estimating the change in activity induced by treatment—

our modeling will include both variation in the timing of treatment among those who experience

DST and and a “never treated” group where GitHub activity should be unperturbed by DST.

3.1 Day-level analysis

In estimating the effect of DST on daily activity we estimate

ln(Eventscyd) = α +
−2∑

d=−21

βd +
21∑
d=0

βd DSTcyd + ψc +

λy + δd + Xcyd + ucyd ,

(1)

where ln(Eventscyd) is the log number of events in city c in year y on day d. With the day

immediately before DST as the excluded category, this allows for estimated β̂d to be interpreted

as percentage differences relative to the day before DST. In estimating (1) we also include city

fixed effects (ψc) to absorb any level differences in average events across cities, day-of-year (δd)

fixed effects to absorb differences over time and work-week seasonality, and year fixed effects

(λy) to absorb any average difference in activity across years in our sample. In Xcyd we also

include controls for day-of-the-week and for national holidays, capturing variation in activity

that should not be attributed to DST when likely due to holidays that coincide with Sunday

transitions.9 Errors are captured in ucyd. Given the staggered timing of DST, we follow Sun and

Abraham (2021), though the qualitative results do not vary with this consideration.

In Figure 2 we report estimates of (1) for a pooled model (i.e., across all days). However,

patterns in Figure 1 suggest that day-of-week effects may vary by city—some cities exhibit

more or less weekend activity, for example. We are inclined, then, to allow day-of-week effects
9 As Easter coincides with treatment in the European Union in 2013 and in 2016, we also differentiate Easter

from other holidays. Likewise, Presidents’ Day falls within the three-week sample in six out of the seven years of
the US cities. (In 2016, President’s Day is 27 days prior to DST.)
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to vary by city. This is empirically challenging, however, as DST falls on Sundays, which pre-

cludes the estimation of separate day-of-week effects by city. To allow for the same flexibility,

then, we estimate separate models for each day of the week, which we report in Panel B. (Strati-

fying the sample in this way allows the city fixed effect to absorb any city-specific day-of-week

effects.) For ease of interpretation, we present each of the seven models together in Panel B.

With each model using the same day in the week prior as the omitted category, the results are

interpreted as percentage differences relative to the same day (e.g., Monday, Tuesday) the week

before the initiation of DST.

In the end, in daily measures of activity we find a short-lived decline associated with DST.

It is only the first Sunday of DST itself and the Monday following DST for which we can

distinguish activity from baseline levels. That said, these effects are economically meaningful,

suggesting reductions in the number of events on the public GitHub timeline on the order of

10 percent (p < 0.0001, σ = 0.1) on the Sunday and 4 percent (p < 0.005, σ = 0.04) on

Monday following treatment.10 Results are robust when estimating with a Poisson model. A

similar regression in levels produces comparable results—statistically significant estimates of a

decline of 72.27 and 51.07 daily events per city for Sunday and Monday respectively.

While longer-lasting effects are statistically indistinguishable from zero, we note a distinct

“Sunday effect” in the data following DST, which we interpret as a response to the extra hour of

daylight that is coincident with DST inducing more of a weekend out of users in treated cities

relative to those in control cities.

In Figure 3 we restrict our sample in two ways, each having the potential to inform how we

interpret the systematic relationship between DST and GitHub activity. In Panel A we consider

10 To ensure this result is not merely reflecting the mechanical loss of one hour on treated Sundays, we impute
the activity of this missing hour by adding the number of events that occurred during the same hour in the same city
in the same year on the Sunday immediately prior to DST. Without this imputation, which induces a mechanical
decline in treated Sundays, the measurable impact for the first treated Sunday is a reduction in activity by 11%
percent (instead of 10).
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events that occur between 9am and 7pm—these are the most active hours of the day, accounting

for 69 percent of activity. Under this restriction we find a similar pattern—a 14 percent reduction

in the number of events (p < 0.0001, σ = 0.13) on Sunday and 5 (p < 0.05, σ = 0.04) on the

Monday following treatment. In Panel B we restrict observations to only “pushes.”11 Again, we

find similar patterns in the number of events—declines of 12 percent (p < 0.0001, σ = 0.12)

on Sunday and 3 percent (p < 0.05, σ = 0.04) on the Monday following treatment.

3.2 Hour-level analysis

In Figure 4 we demonstrate the patterns in activity visually, focussing on one week before and

after DST transitions. In Panel A we plot weekly mean event counts separately for each group

(i.e., cities in North America, in the EU, and those never treated) across each hour of the day. In

Panel B we plot the difference in means, subtracting hourly averages by treatment status sepa-

rately for pre- and post-treatment period. In Panel C we plot the “second difference” in means,

subtracting the post-treatment differences by pre-treatment differences (again, separately by

group). This suggests declines in GitHub activity in the traditional morning work hours.

To formally model hourly GitHub events around transitions to DST we estimate

ln(Eventscydh) = α +
−2∑

d=−21

βd DSTcydh +
21∑
d=0

βdh DSTcydh + ψc +

λy + δd + σh + Xcyd + ucydh ,

(2)

with ln(Eventscydh) now defined at the city by year by day by hour (h). In daily activity, DST

always falling on Sundays prohibited the estimating of separate day-of-week effects by city. To

flexibly fit hour effects in 2 we model each hour of the day separately for each day of the week.

In Figure 5 we present 24 plots, corresponding to each hour of the day—each plot can then

be interpreted as the estimated differences in hourly productivity relative to the same hour and
11 Recall that “pushes” are among all events in the earlier analysis, but arguably represent the type of event type

that we would think is most representative of productivity as they encompass all changes uploaded to a remote
copy.

10



day in the week prior to DST. Unlike daily estimates, which identify one to two days of signif-

icant decreases in activity, the analysis of hourly data reveals longer-lived declines in activity

following DST—this is particularly evident in the traditional morning work hours. Relative to

baseline activity, the initiation of DST induces significant declines in the 8am, 9am, and 10am

hours for roughly two weeks. (Declines in the 8am hour are distinguishable from zero for 12

days, in the 9am hour for 16 days, and in the 10am hour for four days.) In magnitude, activity

decreases 28 to 48 percent, and remains evident in the data for roughly two weeks. Without ev-

idence of any systematic increases in activity elsewhere in the day, the overall patterns of daily

activity are consistent with users adopting a variety of strategies to cope with the transition.

To synthesize the variation in hourly estimates and better understand the nature of users’

transitions to DST, in Figure 6 we consider whether there are discernible patterns in the point

estimates from the hourly analysis. Separately for each week, we ask whether the point esti-

mates in Figure 5 exhibit any seasonality across hours of the day. On the left of Figure 6, then,

we re-align those same point estimates to instead represent the 168 hours in each week leading

into and out of DST. On the right, we then present the hourly variation that is identifiable in

that week (i.e., one estimated parameter for each hour of the day).12 This context makes clear

that the “shape” of what is normal variation in hourly activity changes with the arrival of DST.

While no systematic patterns exists across hour of the day in the weeks prior to DST, with

DST’s arrival the systematic declines in activity in the morning work hours are again evident.

Immediately following DST, magnitudes of the decline are greatest in the 9am hour, with a 34

percent reduction. Further, this pattern attenuates in the second and third weeks following DST,

as workers arguably recover from the disruption to time. Reductions remain largest at 9am but

reduce in magnitude to 26 percent and 17 percent in the second and third week following DST.

12 In each, we’ve omitted 4am as the reference category.
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4 Conclusion

Even though Daylight Saving Time changes the social clocks of over one billion people each

year, concerns over the associated economic and social welfare implications continue to be de-

bated. By considering active users of a popular cloud based version-control platform, we exploit

variation in the application of DST across technology centers around the world to estimate the

productivity implications of shifting clock time this way.

At the daily level, we find significant level declines in the recorded activity of GitHub users

who experience DST—on the Sunday of DST itself, and the Monday immediately following the

transition to DST. While this suggest that the productivity declines are over quickly, there are

two ways that the data support the belief that the transition is more costly to productivity. First,

we find persistent “Sunday effects” in treated cities—while daily activity returns to baseline

following two-day declines, GitHub activity is persistently lower on Sundays. Second, hourly

analysis reveals much-longer-lasting disruptions—morning declines are evident for upwards of

two weeks following the initiation of DST.
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Figure 1: Mean number of events, by treatment status

A: Total events per day, ±3 weeks to DST

B: Total events per hour, ±1 weeks to DST

Notes: North America includes the treated cities in the United States and Canada. Europe includes
the treated cities in the European Union. See Table S3 for specific dates associated with DST. (In the
“-21 to -15” cell of Panel A, the lower level of activity on Monday in North America is attributable
to President’s day.)
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Figure 2: Does DST induce a change in the total number of daily GitHub events?

A: Pooled model (across day of week) normalized to the Saturday prior to treatment

B: Separate models (by day of week), with events
normalized to the week prior to treatment

Notes: The sample includes the observations of the total number of GitHub events (logged) three
weeks before and after DST (n = 43× 50 = 2, 150, representing 141,899 unique users). In Panel A
we estimate one model, using a pooled sample of all days and leaving the Saturday prior to treatment
as the omitted category. We estimate city, day-of-week, day-of-year, year, and holiday fixed effects.
With evidence that day-of-week effects vary by city (e.g., some cities exhibit more or less weekend
activity), we are inclined to allow day-of-week effects to vary by city. However, as treatment always
falls on a Sunday we cannot estimate separate day-of-week effects by city. In Panel B we therefore
estimate seven separate models (i.e., one model for each day of the week) where the city fixed effect
absorbs day-of-week differences.



Figure 3: Do we see different responses within working hours, or if we restrict
events to “pushes” only?

A: Total events during work hours (9a-5p)

B: Pushes only (all hours)

Notes: The sample includes the observations three weeks before and after DST (n = 43 × 50 =
2, 150). In both panels we estimate seven separate models (i.e., one model for each day of the week).
In Panel A the sample includes the total number of GitHub events (logged) three weeks before and
after DST, restricted to those falling within the hours of 9am to 5pm. In Panel B the sample includes
the number of pushes (logged) three weeks before and after DST.
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Figure 4: Constructing hourly difference-in-differences estimates

A: Mean counts of total events by treatment status, DST ±1 week
(i) North America and the never treated (ii) EU and the never treated

Pre Post Pre Post

B: Post- and pre-DST differences in total number of events (“treatment – control”)
(i) North America (ii) European Union

C: Difference in differences
(Post-DST “treatment – control” – Pre-DST “treatment – control”)

(i) North America (ii) European Union

Notes: In Panel A we plot the mean number of hourly events in the one week before and one week
after DST, separately for North America and Europe. In Panel B we plot the difference in means,
subtracting hourly averages by treatment status separately for pre- and post-treatment period. In
Panel C we plot the “second difference” in means, subtracting the post-treatment differences by
pre-treatment differences

18



Fi
gu

re
5:

H
ou

r-
sp

ec
ifi

c
es

tim
at

es
of

th
e

ef
fe

ct
of

D
ST

on
G

itH
ub

ev
en

ts

N
ot

es
:

T
he

sa
m

pl
e

in
cl

ud
es

th
e

ob
se

rv
at

io
ns

of
th

e
to

ta
ln

um
be

r
of

G
itH

ub
ev

en
ts

(l
og

ge
d)

th
re

e
w

ee
ks

be
fo

re
an

d
af

te
r

D
ST

(n
=

43
×
50

×
24

=
51

,6
00

,r
ep

re
se

nt
in

g
14

1,
89

9
un

iq
ue

us
er

s)
.

19



Figure 6: Does the pattern of hourly events change around DST?

A: -21 to -15 days to DST

(i) Hour-specific estimates (ii) Average activity by hour

B: -14 to -8 days to DST

(i) Hour-specific estimates (ii) Average activity by hour

C: 0 to 6 days from DST

(i) Hour-specific estimates (ii) Average activity by hour

D: 7 to 13 days from DST

(i) Hour-specific estimates (ii) Average activity by hour

E: 14 to 20 days from DST

(i) Hour-specific estimates (ii) Average activity by hour

Notes: Point estimates in (i) are from corresponding hours in Figure 5. In (ii), we estimate the
average hourly activity in the corresponding week.
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Table S1: GitHub events with proportional breakdowns

Name Description Proportion

Push One or more commits are pushed to a repository
branch or tag

0.424

Issue comment Activity related to an issue or pull request
comment

0.145

Watch When someone stars a repository 0.107

Create A Git branch or tag is created 0.083

Pull request Activity related to pull requests 0.083

Issue Activity related to an issue 0.055

Pull request review Activity related to pull request review comments
in the pull request’s unified diff

0.044

Delete A Git branch or tag is deleted 0.031

Fork A user forks a repository 0.014

Gollum When a wiki page is created for a repository 0.006

Release Activity related to a release 0.005

Member Activity related to repository collaborators 0.002

Public When a private repository is made public 0.001
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Table S2: Top 50 GitHub cities, by total events in 2013–2019

Rank City Events Pushes Early / Late / Never DST

1 San Fransisco Bay, US a 24,661,994 9,866,982 Early
2 London, GB 11,899,803 4,921,165 Late
3 Seattle / Redmond, US 10,603,863 4,220,038 Early
4 New York, US 10,134,305 4,491,422 Early
5 Berlin, DE 7,505,479 2,965,833 Late
6 Tokyo, JP 6,725,725 3,002,795 Never
7 Paris / Paris, FR 6,440,234 2,743,032 Late
8 Boston / Cambridge, US 5,758,715 2,452,179 Early
9 Los Angeles, US 4,088,571 1,671,551 Early

10 Toronto, CA 3,785,193 1,657,969 Early
11 Washington / Baltimore, US 3,674,995 1,661,466 Early
12 Portland, US 3,472,755 1,517,178 Early
13 Moscow, RU 3,352,144 1,477,497 Never
14 Austin, US 3,244,818 1,372,864 Early
15 Denver / Boulder, US 3,055,455 1,316,222 Early
16 Chicago, US 3,047,534 1,384,378 Early
17 Amsterdam, NL 2,643,473 1,150,170 Late
18 Vancouver, CA 2,482,046 1,028,486 Early
19 Montreal, CA 2,325,379 1,015,984 Early
20 Bengaluru, IN 2,272,297 1,014,638 Never
21 Stockholm, SE 2,268,401 1,013,413 Late
22 Munich, DE 2,233,769 917,433 Late
23 Raleigh, US 2,040,004 660,386 Early
24 Madrid, ES 2,031,618 823,199 Late
25 Zürich, CH 2,018,204 862,027 Late
26 Seoul, KR 1,746,734 837,688 Never
27 Prague, CZ 1,740,558 733,109 Late
28 Philadelphia, US 1,728,980 741,104 Early
29 Hamburg, DE 1,666,523 732,504 Late
30 Kyiv, UA 1,624,576 723,113 Late
31 San Diego, US 1,617,850 823,158 Early
32 Oslo, NO 1,484,586 657,178 Late
33 Cambridge, GB 1,471,832 681,485 Late
34 Atlanta, US 1,464,569 686,143 Early
35 Saint Petersburg, RU 1,461,972 630,312 Never
36 Pittsburgh, US 1,439,968 747,827 Early
37 Copenhagen, DK 1,438,777 580,865 Late
38 Lausanne / Geneva, CH 1,333,881 552,245 Late
39 Warsaw, PL 1,274,021 556,611 Late
40 Tulsa, US 1,221,202 480,833 Early
41 Helsinki, FI 1,163,743 534,872 Late
42 Cologne, DE 1,139,073 499,945 Late
43 Vienna, AT 1,132,286 519,615 Late
44 Taipei, TW 1,113,622 492,575 Never
45 Minneapolis, US 1,097,682 466,351 Early
46 Lyon, FR 1,027,755 442,294 Late
47 Ottawa, CA 1,003,609 419,492 Early
48 Brno, CZ 973,900 379,024 Late
49 Dallas, US 953,706 419,439 Early
50 Budapest, HU 936,181 444,574 Late

a Mountain View, Oakland, San Jose, Palo Alto, Berkeley.
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Table S3: The timing of Daylight Saving Time across treated locations

Year North American European Union

2013 March 10 March 31
2014 March 09 March 30
2015 March 08 March 29
2016 March 13 March 27
2017 March 12 March 26
2018 March 11 March 25
2019 March 10 March 31
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Figure S1: Do we see different responses across treatment groups?

A: Total events, North America and never treated

A: Total events, European Union and never treated

Notes: In both panels we estimate seven separate models (i.e., one model for each day of the week).
In Panel A the sample includes the total (logged) number of GitHub events three weeks before and
after DST, restricted to users in North American and in never-treated cities (see Table S2). In Panel
B the restriction is to users in European Union cities and in the never-treated cities.
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