Econ 330: Urban Economics

Lecture 09

Andrew Dickinson 30 November, 2021

Lecture 09: Place Based Policies

Schedule

Today:

(i). Place-based policies

• General utility framework

Upcoming:

- **Reading** (Chapter 8)
- PS03 will be posted later today

Place-based polcies

Place-based polcies

Definition: Place-based policies - Location specific policies/laws

- What are some examples?
- State and Local Taxes
- State/City minimum wage
- Abortion restrictions
- Air quality monitoring

- Zoning & Land Use Restrictions
- Enterprise Zones
- Medicinal and recreational marijuana laws

Federal policies that are uniform across all states are not place-based

• Harder to migrate across **international borders** than state borders

Place-based polcies: Examples

Pb polcies: Minimum wage

The U.S. Minimum Wage By State

State minimum wage legislation as of January 09, 2021*

Federal Minimum Wage: 7.25 (not a place based policy)

Pb polcies: Enterpise zones

Definition: Enterprise zone:

A geographic area that has been granted tax breaks, regulatory exemptions, or other public assistance in order to encourage private economic development and job creation

Examples:

- Jersey City, NJ since 1983
- China: Shanghai and Shenzen (Special Economic Zones (SEZ))

Pb polcies: Brownfield remediation

Definition: Brownfield:

A geographic area that has previously been developed land that is not currently in use due to industrial and/or commerical pollution

Examples include abandoned business such as:

• Gas stations

• Mills

• Dry cleaning

• Foundries

• Factories

There are several Brownfields in the Eugene/Springfield area

• Ninkasi over took a brownfield to expand brewing operations in 2012

Pb polcies: Brownfields remediation

Pb polcies: Brownfields remediation

Brownfields lower the amenity value of neighborhoods

- High health costs associated with living near a brownfield
 - Petroleum leaks from underground storage tanks lead to increases in the probability of low birth weights and preterm birth by 7-8 percent
- Tremendously expensive to clean up

Land is not used it is not contributing to local economies- opportunity cost

Cleaning these up raises **amenity value** of the neighborhood

Property values around brownfields are far lower than comparable land

- What happens to property values? Go up
 - .hii[Gentrification]

December 2, 1970: Environmental Protection Agency (EPA) is Established

- Included the Clean Air Act
 - Regulates county level air quality with a system of air monitors

Following years: amendments to the CAA

- **1990:** Additional power granted to state/local authorities to enforce air quality standards
- **1997:** PM 2.5 (particulate matter of 2.5 micrograms or less) standards placed

- 2005: PM2.5 standards enforced
- **2011:** Standards for greenhouse gases

Particulate Matter (**PM**) in the US is regulated at the **county level**[†]

If a county exceeds certain threshold for ${\sf PM}$, all firms over a certain size need to pay a pretty big fine

• Exceptions for fires, other natural events

• Di et al. (2016)

Does air quality monitoring make sense at a local level? Why or why not?

Pb polcies: Discussion

Why do we care about place-based policies?

People are mobile and respond to changes in incentives

Place-based policies influence **location decisions**

• TotC give really good intuition in the chapter about Detroit.

Question: Why do federal policies impact cities differently?

Min wage: might be **binding** in some states, others not

- Some labor markets might be competitive. Others not
- Federal Income Tax: Cost of Living varies by state.

This next section of the class will add another layer of complexity

Set up a **utility framework** to understand how policies impact welfare --Only scratches the surface of how one may model impacts of pb policy

Some of these examples are based on Mark Colas' notes

• Learn more about this in his 400 urban economics class

Utility: Abstract notions of people's preferences. **Why does it matter?**

Location based policies impact individual **location decisions**

- Model decision through the lens of an individual's utility (welfare)
- Higher utility is better
 - $\circ \ U(\operatorname{City} A) > U(\operatorname{City} B) \implies$ Moving to City A

Suppose City B makes a policy change that raises wages

• Now $U(\operatorname{City} A) < U(\operatorname{City} B) \implies$ Moving to City B

Changes in a location based policy are going to change **incentives**

• eg. San Diego has extremely strict zoning restrictions

Zoning restrictions \implies limited housing supply \implies high rents \implies "why do i live here.." \implies move to Oregon 20 / 34

Example: Preferences over left-shoes and right-shoes may be expressed with the following utility function:

 $U(\text{left shoes}, \text{right shoes}) = \min\{\text{left shoes}, \text{right shoes}\}$

Q: In words, what does this say?

A: Another right shoe does nothing for me unless I get another left shoe Q: Give the above utility function, which bundle would I rather consume?

bundle 1: (10000, 1) bundle 2: (2, 2)

A: U(10000, 1) = 1 < U(2, 2) = 2, so I would rather consume bundle 2

Main point: Utility is used to rank outcomes

Remember: Utility is **ordinal** not **cardinal**

This means: we can only speak to the ordering of outcomes, not the levels

• Many utility functions give equivalent preference rankings

What if utility over shoes was:

 $U_2(\text{left shoes}, \text{right shoes}) = 10 * \min \{\text{left shoes}, \text{right shoes}\}$

Q: Does this represent the same underlying preferences as before?

A: Yes, because $U_2(10000,1) = 10 * 1 = 10 < U_2(2,2) = 10 * 2 = 20$

• So the bundle (2,2) is still preferred to (10000,1)

Could we write a utility function over locations?

Yes!

What would a locational utility function take as **inputs?**

What do people make location decisions on?

For now, assume people only care about 3 features of locations:

wages, rents, amenites

These all vary across locations, right? (first part of this class)

Let w_j , r_j , and a_j denote wages, rents, and amenities in location j

Let w_j , r_j , and a_j denote wages, rents, and amenities in location j

• j = SF, for example

General form: $U(w_j, r_j, a_j) = U_j$

• This says utility in location *j* is a function of wages, rents, and amenities, in location *j*

In practice, could write down an infinite number of functions for $U(\cdot)$

Usual assumptions:

- Higher wages are better
- Lower rents are better

• More amenities are better

Is this reasonable?

Example: Assume linear utility functions and everyone is identical:

$$U(w_j,r_j,a_j)=w_j-.5*r_j+a_j$$

Suppose our two locations are SF and OAK again. If:

•
$$w_{SF} = 10, r_{SF} = 8, a_{SF} = 4$$

•
$$w_{OAK} = 8, r_{OAK} = 3, a_{OAK} = 1$$

Q How do workers sort across the cities?

•
$$U(w_{SF}, r_{SF}, a_{SF}) = 10 - .5 * 8 + 4 = 10$$

•
$$U(w_{OAK}, r_{OAK}, a_{OAK}) = 8 - .5 * 3 + 1 = 7.5$$

Well 10 > 7.5 so... everyone moves to SF

Is it reasonable that everyone would move to SF? What are we missing?

Was that last example an example in locational equilibrium?

No!

In locational equilibrium, utility is equalized across locations

Can't have: $U(w_{SF}, r_{SF}, a_{SF}) > U(w_{OAK}, r_{OAK}, a_{OAK})$

How can we use locational eq to "fix up" our last example?

We can **allow rents** (or wages or both) **to adjust** such that utility is equivalent across the two cities

Another Problem: People move and utility is equal across all locations

Thus far, we assume wages and rents are exogenous

• Fall from the sky, do not change with location decisions

This is a **bad assumption** right?

Let rents, but not wages, adjust to individual location decisions

• Make rents **endogenous** to the model

Utility framework: Rents

Rents in every city given by:

$$r_j(L_j)=2 imes L_j$$

- $r_j(L_j)$: rents are a function of the population (not multiplied)
- L_j is the pop in city j; choosing 2 was arbitrary

Suppose we have two cities 1 and 2, with 7 people total: $L_1+L_2=7$

Utility:
$$U(w_j,r_j(L_j),a_j)=w_j-.5 imes r_j(L_j)+a_j$$

Wages: $w_1=12$, $w_2=7$

Rents: $r_j(L_j) = 2 * L_j$

Amenities: $a_1 = a_2 = 0$

Utility framework: Rents example

Suppose we have two cities 1 and 2, with 7 people total: $L_1 + L_2 = 7$

Utility: $U(w_j, r_j(L_j), a_j) = w_j - .5 imes r_j(L_j) + a_j$

Wages: $w_1=12$, $w_2=7$

Rents: $r_j(L_j) = 2 * L_j$

Amenities: $a_1 = a_2 = 0$

Qs: How many people live in each city? What are rents in each city?

Note: You have **two equations** and **two unknowns** (namely, L_1 and L_2)

- $U(w_1, r_1(L_1), a_1) = U(w_2, r_2(L_1), a_2)$ (from locational eq)
- $L_1 + L_2 = 7$ you know the total population

Utility framework: Rents example

Locational eq gives:

$$egin{aligned} w_1-.5*r_1(L_1)&=w_2-.5*r_1(L_2)\ 12-.5*(2*L_1)&=7-.5*(2*L_2)\ &-L_1&=-5-L_2\ &L_1&=5+L_2 \end{aligned}$$

Population must sum to 7. Thus:

$$egin{aligned} L_1 + L_2 &= 7 \ 5 + L_2 + L_2 &= 7 \ 2 * L_2 &= 2 \ L_2 &= 1 \implies L_1 &= 6 \end{aligned}$$

Utility framework: Place based policies

Ok, how do we tie this back into **place-based** policies?

Example

Initial equilibrium: $U(w_j, r_j(L_j), a_j) = k$ for all cities j

Suppose *SF* implements a 30%, flat, income tax

- Post-tax wage in city SF is now $w_{SF}^{tax}=0.7*w_{SF}$
- Assume wages are fixed, but rents adjust to population

Utility in city j is:

$$U(w_{SF}^{tax},r_{SF}(L_{SF}),a_{SF}) < U(w_{SF},r_{SF}(L_{SF}),a_{SF})$$

If utility is **increasing in wages**, then an income-tax lowers utility.

Utility framework: Equilibrium

Can it be an equilibrium if:

 $U(w_{SF}^{tax},r_{SF}(L_{SF}),a_{SF}) < U(w_{SF},r_{SF}(L_{SF}),a_{SF})$

No!

Because $U(w_{SF}, r_{SF}(L_{SF}), a_{SF}) = k$

So $U(w_{SF}^{tax},r_{SF}(L_{SF}),a_{SF})
eq k$

Thus people move **away from SF** and rents fall

So utility goes up in SF until $U(w_{SF}^{tax}, r_{SF}(L_{SF}), a_{SF}) = k$

Extensions

This flexible way of modeling gives us many options for modeling place based policies

- Other kind of subsidies/taxes: goes into w_j
- Rent subsidies or property taxes: impacts r_j
- Q: How would you model an increase in public school quality?

Fin