### Rents and city shape

EC330, Set 05

Andrew Dickinson Fall 2022

### Content

- (i) Intro to rents
- (ii) City "shape"

## Housekeeping

#### **Assignments:**

- PS01 was due last night
  - Go over solutions today?
- **PS02** will be posted later this week
  - due date TBD
- Reading
  - finish up to chapter 4 this week

#### **Midterm:**

• Wed, Nov 2

# Introduction to city shape

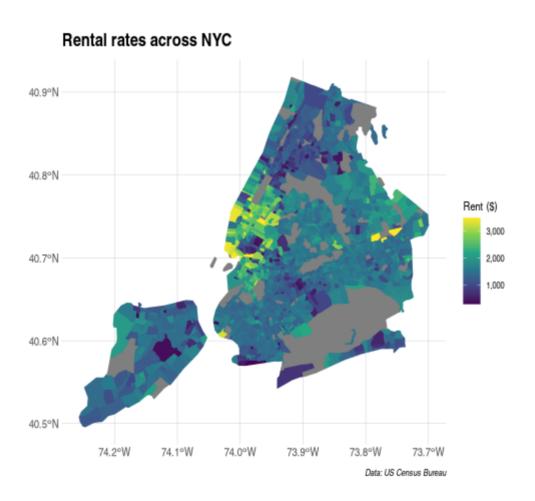
### Introduction to city shape

#### First Week: philosophicalish questions

- What is a city?
- Why do cities exist?

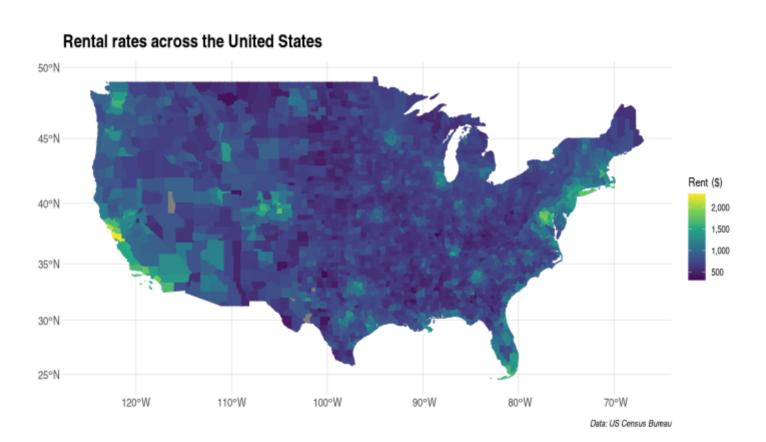
- What determines city size?
- How do cities grow?

#### **Moving forward:**


What economic forces determine **city shape**?

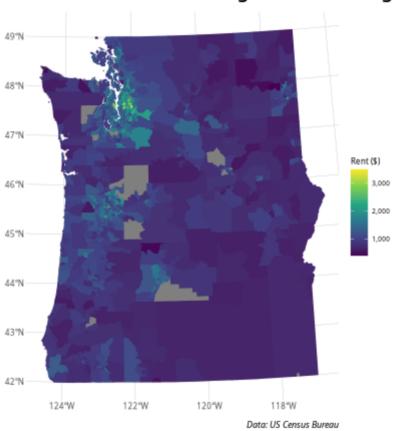
- Why does the price of land change?
- Why are buildings taller in city centers?

#### **Questions?**

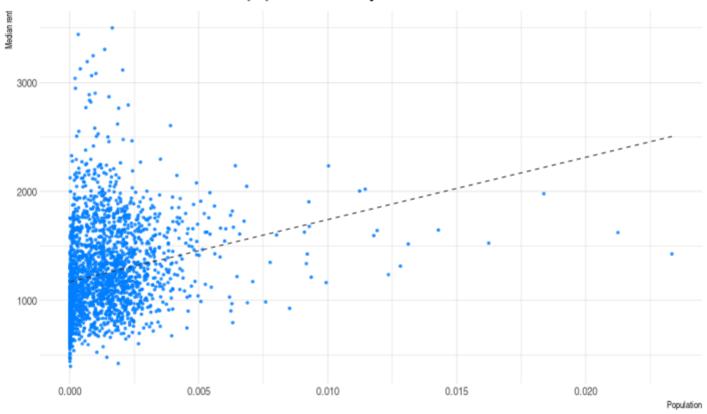

### Data

### Data: NYC




## Data: NYC

### Data: US




## Data: OR, WA

#### **Rental rates across Oregon and Washington**



#### Correlation between rent and population density in OR and WA



Data: US Census Bureau

### Introduction to city shape

Imagine you are standing at the center of a large metropolitan city

What do you see as you walk toward the outskirts?

Which economic **factors** drive **within-city** location decisions?

- Rents
- Wages

Model the **rough** historical "shape" of cities considering these factors

- Today: How do these choices impact rental prices within cities
- Later: How do these choices impact rental prices across cities

### Bid-rent curves

### Bid-rent curves

**Bid - Rent Curve:** The relationship between rental prices and the distance of land from the city center <sup>†</sup>

#### These curves vary across sectors:

- Housing: Accessibility to employment (low commuting costs)
- Industrial Space: Accessibility to consumers and suppliers
- Tech/Office Space: Accessibility to information

First a super **simple** agricultural land rent model

† It actually does not have to be the city center -- can be a point of attraction. In this class we will always use the city center though.

## Agricultural land rent model

#### **Definitions:**

- Land rent: Periodic payment by a land consumer to a landowner
- Market value: The amount paid to become the landowner

#### Setup:

Rent on a plot of land is determined by how productive the plot is

• Agriculture: Price of plot is determined by fertility

Consider a setting where farmers grow corn on two types of land

 High fertility (HF): Produces 4 units of corn  Low fertility (LF): Produces 2 unites of corn

## Agricultural land rent model

#### **Assumptions:**

- (i) Farmers rent from landowners  $TC_{-r} = 15$  (excluding rent)
- (ii) No barriers to the corn market
- (iii) Perfect competition

$$TC_{-r}=15$$
 (excluding rent)

$$TC=15+r\ \&\ P_{corn}=10$$

#### How much will farmers bid for land?

Revenue:  $TR = P_{corn} \cdot Q_{corn}$ 

- HF:  $TR_{HF} = 10 \cdot 4 = 40$
- LF:  $TR_{LF} = 10 \cdot 2 = 20$

Profit:  $\Pi = TR - TC$ 

- $\Pi_{HF} = TR_{HF} TC = 40 15 r$
- $\Pi_{LF} = TR_{LF} TC = 20 15 r$

**Recall A05:** Competition drives economic profit to zero

## Agricultural land rent model

The following table computes maximum WTP for rent:

**TABLE 6–1** Fertility and Land Rent

|                | Price of | Quantity | Total   | Nonland | WTP      | Bid Rent |
|----------------|----------|----------|---------|---------|----------|----------|
|                | Corn     | Produced | Revenue | Cost    | for Land | for Land |
| Low fertility  | \$10     | 2        | \$20    | \$15    | \$ 5     | \$ 5     |
| High fertility | \$10     | 4        | \$40    | \$15    | \$25     | \$25     |

Since there are no barriers to entry, if  $\Pi>0$  more firms will enter

• 
$$\Pi \rightarrow 0$$

• 
$$\Pi_{HF} = TR_{HF} - TC = 40 - 15 - r = 0 \Rightarrow r = 15$$

• 
$$\Pi_{LF} = TR_{LF} - TC = 20 - 15 - r = 0 \Rightarrow r = 5$$

# (i) Housing prices model

Extend the bid-rent model to the housing sector within a city

In cities WTP for land depends on **accessibility** rather than productivity

#### **Assumptions:**

- (i) Commuting costs are the only location factor in decision making
- (ii) Only one member of household commutes to employment area
- (iii) They only consider the monetary cost of commuting (no time cost)
- (iv) Noncommuting travel is insignificant
- (v) Public services, taxes, amenities are the same everywhere

Assumptions ensure the employment area is the focal point of the city

## (i) Housing prices model: Indifference

**A1:** Housing prices adjust until there is locational indifference

- Locational Eq
- IE: A marginal increase in rent just offsets the lower commuting costs

We call this the **locational equilibrium condition**; in math:

$$\Delta P \cdot h + \Delta x \cdot t = 0$$

where

- P: **Price** of housing (per  $ft^2$ )
- h: Housing quantity (  $ft^2$  )

- x: **Distance** of commute (miles)
- t: Commuting costs (per mile)

With locational indifference, we can derive the **slope** of the **bid-rent** curve:

$$\Delta P \cdot h$$
 +  $\Delta x \cdot t$  = 0

Marginal change in housing cost Marginal change in commuting cost

With locational indifference, we can derive the **slope** of the **bid-rent** curve:

$$\Delta P \cdot h + \Delta x \cdot t = 0$$
  
 $\Delta P \cdot h = -\Delta x \cdot t$ 

With locational indifference, we can derive the **slope** of the **bid-rent** curve:

$$\Delta P \cdot h + \Delta x \cdot t = 0$$

$$\Delta P \cdot h = -\Delta x \cdot t$$

$$\frac{\Delta P}{\Delta x} = -\frac{t}{h}$$

**Notice**:  $\frac{\Delta P}{\Delta x}$  is the slope of the **bid-rent** curve

Note: Price on the verticle axis, distance on the horizontal. Rise over run

 $\Delta P \cdot h = -\Delta x \cdot t$ : Another way of putting this: MC = MB!

**Alternatively:** Suppose you have decided that the optimal amount of money to spend on housing and commuting per month is  $M^*$ 

You can allocate this as

$$P \cdot h + x \cdot t = M^*$$

• Since we graph the bid rent curve in the (x, P) space, we solve for P:

$$P \cdot h + x \cdot t = M^* \ P \cdot h = M^* - x \cdot t$$

**Alternatively:** Suppose you have decided that the optimal amount of money to spend on housing and commuting per month is  $M^*$ 

You can allocate this as

$$P \cdot h + x \cdot t = M^*$$

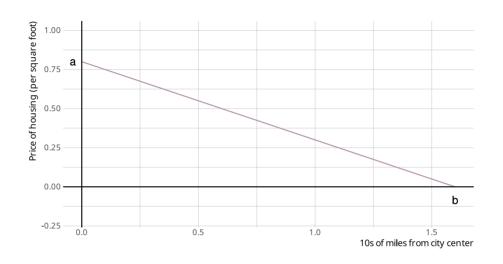
• Since we graph the bid rent curve in the (x, P) space, we solve for P:

$$P \cdot h + x \cdot t = M^*$$
 $P \cdot h = M^* - x \cdot t$ 
 $P = \frac{M^*}{h} - \frac{t}{h} \cdot x$ 

• Slope:  $\Delta P = 0 - rac{t}{h} \cdot \Delta x \implies rac{\Delta P}{\Delta x} = -rac{t}{h}$ 

We can use calculus and take derivative if P w.r.t x and get the same thing

# (i) Housing prices model: Example


#### Suppose the following:

- Each household has \$800 a month to spend on housing and commuting
- All rental units are the same size (1000 sq/ft), one HH occupying each
- Monthly commuting cost is \$50 dollars per mile from city center

Task: Draw the housing - price curve.

• Put miles from city center on x axis and price per square foot on y axis

## Example: The housing price curve



a: Max WTP for a square foot (at center of city) (80 c per square foot)

**b:** Furthest away from center HH is willing to live (16 miles)

## (i) Housing prices model: Substitution

**Q**: If you are trying to move to a better area, would you choose to sacrifice ("substitute") apartment size?

A: Probably yes. Most people are willing to substitute

**Q**: What do I mean by substitute? Substitute what?

A: Substitute housing consumption for lower commuting cost

(or anything else being close to the center of the city gets you)

## (i) Housing prices model: Substitution

Let's formalize the mechanism for substitution a bit:

**higher prices**  $\implies$  **higher oppurtunity cost** per square foot of housing

- As rent ↑, consumers are likely to substitute towards other goods
  - decreasing the square footage of housing demanded

Housing units closer to city centers are thus likely to be smaller in size

## Adding substitution to the model

**Q:** Did our model of locational indifference accommodate for substitution?

$$\Delta P \cdot h + \Delta x \cdot t = 0$$

**A:** No because h is **independent of distance** from center, x

• h (quantity of housing consumed) is **exogenous** in the model

If consumers can **substitute**, our locational indifference condition becomes:

$$\Delta P \cdot h(x) + \Delta x \cdot t = 0$$

Where h(x) is an increasing function of x

**Ex**: h(10) > h(5)

• Quantity of housing demanded 10 miles away exceeds that of 5 miles

# Manufacturing Bid-Rent

### Manufacturing Bid Rent

WTP for land from manufacturing firms is a function of accessibility

Urban manufacturing employment is largely decentralized

Most firms locate close to the highway. Why?

Firms are balancing freight and labor costs

- Further from labor 

   higher wage (compensating commuting costs)
- Further from shipping center 

   higher freight cost

## Manufacturing Bid Rent

Let's start with a simple model. **Assumptions:** 

- (i) Input prices, output prices & quantities are fixed
  - Firms only decides location
- (ii) Firms import and export output to/from cities via a central terminal
  - Train, harbor, etc.
  - Horse drawn carts are used to bring goods to terminal
- (iii) Wage are a function of commute time.
  - Wage is highest at center

### Firm's Bid Rent

What do we use to get the firm's bid - rent equation?

#### A5: Competition generates zero economic profit

Recall the profit equation:

$$\pi = TR - TC$$

In this model:

- TR = P \* Q (fixed, exogenous, i will tell you)
- ullet TC is a function of freight cost, labor cost, and intermediate goods cost

$$TC(x) = \text{Freight Cost}(x) + \text{Labor Cost}(x) + \text{Land Cost}(x) +$$
Intermediate Input Cost

### Firm Bid Rent

From here on out, let's call  $\operatorname{Intermediate Input\ Cost} = ar{I}$ 

• Invoking zero economic profit, from the last slide we can write:

$$TR - (\operatorname{Freight} \operatorname{Cost}(x) + \operatorname{Labor} \operatorname{Cost}(x) + \operatorname{Land} \operatorname{Cost}(x) + \bar{I}) = 0$$

**In words**: The most a firm would be willing to pay for land then is revenue net of non land cost

Rearranging:

$$\operatorname{Land} \operatorname{Cost}(x) = TR - \operatorname{Freight} \operatorname{Cost}(x) - \operatorname{Labor} \operatorname{Cost}(x) - \bar{I}$$

**Note**: Land Cost =  $P(x) * L_m$ , where:

- P(x) is the price of land at x miles away from the center
- ullet L<sub>m</sub> is the amount of land the manufacturer uses in production

## Firm Bid Rent: Equation

We can replace land cost with  $P(x) st L_m$  to get the equation for the **manufacturing bid rent** curve

$$P(x)*L_m = TR - ext{Freight } ext{Cost}(x) - ext{Labor } ext{Cost}(x) - ar{I}$$

## Firm Bid Rent: Equation

We can replace land cost with  $P(x) st L_m$  to get the equation for the **manufacturing bid rent** curve

$$P(x)*L_m = TR - ext{Freight } ext{Cost}(x) - ext{Labor } ext{Cost}(x) - ar{I} \ P(x) = rac{TR - ext{Freight } ext{Cost}(x) - ext{Labor } ext{Cost}(x) - ar{I}}{L_m}$$

#### **Comparative statics:**

In words, this equation says:

- ullet Higher revenues  $\Longrightarrow$  higher land prices for every distance x
- ullet An increase in freight costs, labor costs, or intermediate input costs will **decrease** the price for every distance x

#### **Suppose:**

$$P=5$$
,  $Q=2$ ,  $FC(x)=4x$ , Labor $(x)=1-3x$ ,  $L_m=1$ ,  $ar{I}=0$ 

- (i) Derive the firm's bid rent curve. Carefully write down your steps
- (ii) What is the price the firm is willing to pay for land at x=1?
- (iii) Is the WTP higher or lower when we move away from the center?
- (iv) What distance away from the center is the WTP zero?

(i) Start with zero profit condition:

$$\pi(x) = 0 \implies TR - FC(x) - LC(x) - P(x) = 0$$

Plugging in:

$$5 \times 2 - 4x - (1 - 3x) - P(x) = 0$$
  
 $9 - x = P(x)$ 

(ii) 
$$P(1) = 8$$

(iii) Lower (if 
$$x_2 > x_1$$
,  $P(x_2) < P(x_1)$ )

(iv) 
$$P(x) = 0 \implies x = 9$$

## Back to Reality

How can a model like this help us understand the industrial revolution?

• What happened to freight costs? **They fell** A few innovations:

#### **Transportation Innovations:**

- Omnibus (1827)
- Cable Cars (1873)

- Electric Trolley (1886)
- Subways (1895)

In our model, what do these innovations do?

#### Decrease labor costs relative to freight

## More History

The *intracity* truck (1910): 2x faster and half as costly as the horse-drawn wagon<sup>†</sup>

- Decreased cost of moving output relative to cost of moving workers
- Manufacturing firms moved closer to low-wage suburbs

Intercity truck (1930): alternative to ships and rail<sup>††</sup>

- Highways: Industry shifted from ports and railroad terminals to roads
- Modern cities: Industry oriented toward highways and beltways
  - Freight costs decreased relative to labor

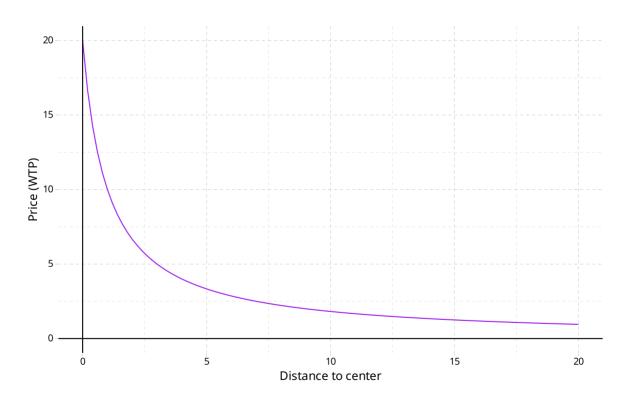
# (iii) Office space bid-rent

## (iii) Office space bid-rent

Final rent bidders we will consider - offices

Same as the other bidders, WTP for land depends on accessibility

#### Why?


Office firms use high skilled labor- face to face interaction is productive

• Proximity to other office firms is an important input

Oppurtunity cost of high skilled labor is greater than other types of labor

### Office Bid Rent

So as office firms get further from center their "transit" cost goes up. So what must happen to WTP?



## City Organization

#### How do we put all of this together?

#### Why are these called bid rent curves?

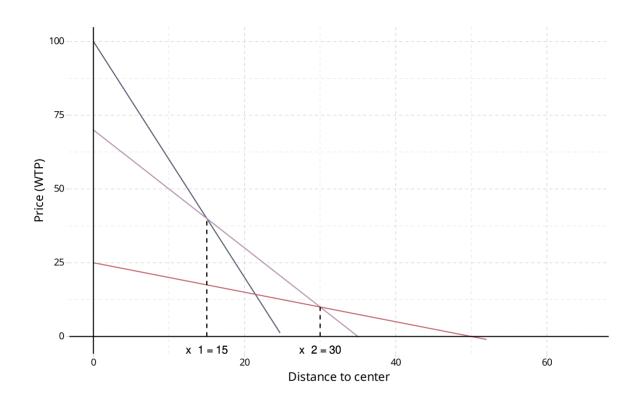
#### Land will be allocated to highest bidder

• This will vary by location in the city

Example: Assume profit for office and manufacturing is given by

$$\pi_{
m office} = 105 - P(x_{
m Office}) - (5 + 4 imes x_{
m office})$$

$$\pi_{ ext{manufact}} = 75 - P(x_{ ext{manufact}}) - (5 + 2 imes x_{ ext{manufact}})$$


For consumers, they can allocate money between housing and commuting:

$$r(x_{ ext{commuter}}) = rac{50}{2} - rac{1}{2} imes x_{ ext{commuter}}$$

$$\pi_{
m office} = 105 - r(x_{
m Office}) - (5 + 4 imes x_{
m office})$$
  $\pi_{
m manufact} = 75 - r(x_{
m manufact}) - (5 + 2 imes x_{
m manufact})$   $r(x_{
m commuter}) = rac{100}{4} - rac{2}{4} imes x_{
m commuter}$ 

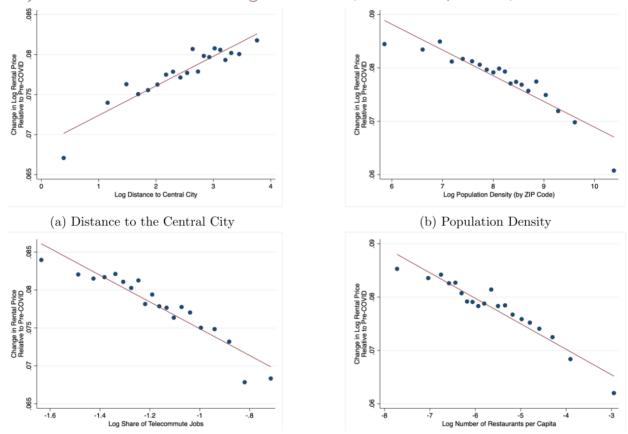
#### Task:

- (i) Derive the bid rent curve for office space, manufacturing, and commuters. Plot all of them.
- (ii) Find how land is allocated. What range from the center is:
  - Office space
  - Manufacturing space
  - Housing space?



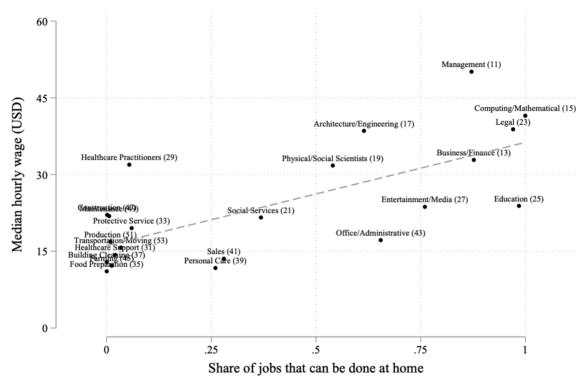
Bid rent curves for office and manufacturing come from zero profit. Commuters curve was given.

- Office:  $r(x_{
  m office}) = 105 (5 + 4 imes x_{
  m office})$
- Manufacturing:  $r(x_{ ext{manufact}}) = 75 (5 + 2 \times x_{ ext{manufact}})$
- Commuters: (given)  $r(x_{ ext{commuter}}) = \frac{100}{4} \frac{2}{4} imes x_{ ext{commuter}}$
- Office firms locate in the range of x in [0, 15]
- Manufacturing firms locate in the range of x in [15,30]
- Commuters locate in the range of x in [30, 50]


### Bonus: COVID19 and Cities research

#### **Questions:**

- Q1) How does COVID19 impact housing/rental prices?
  - Is the effect the same everywhere? Why or why not?
- **Q2)** How many jobs can be done remotely? Does this vary systematically across sectors? Cities?
- **Q3)** What do we think will happen to city structure as a result of increased (potentially permanent) WFH


### Bonus: COVID19 and Cities Research

• **A1:** The Impact of the COVID-19 Pandemic on the Demand for Density: Evidence from the U.S. Housing Market (Liu & Su, 2020)



### Bonus: COVID19 and Cities research

• A2: How many jobs can be done at home? (Dingel & Nieman, 2020)



### Bonus: COVID19 and Cities research

**Q3)** What do we think will happen to city structure as a result of increased (potentially permanent) WFH?

• A3: How Do Cities Change When We Work from Home? (Delventhal et. al, 2020)

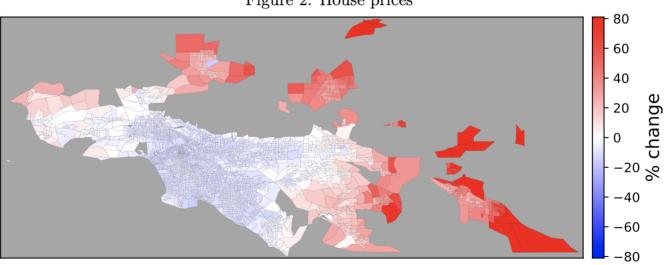



Figure 2: House prices

Note: Percentage change relative to benchmark economy in counterfactual with  $\psi = 0.33$ . See main text for details.

### Checklist

- 1) Intro to Rents 🔽
- 1.5) Bonus: COVID19 and Cities 🔽
- 2) Consumer Bid Rent 🔽
- 3) Manufacturing Bid Rent 🔽
- 4) City Shape 🔽